A Note on Free Vibration of a Double-beam System with Nonlinear Elastic Inner Layer

Authors

  • Alborz Mirzabeigy School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran
  • Reza Madoliat School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran
Abstract:

In this note, small amplitude free vibration of a double-beam system in presence of inner layer nonlinearity is investigated. The nonlinearity is due to inner layer material and is not related to large amplitude vibration. At first, frequencies of a double-beam system with linear inner layer are studied and categorized as synchronous and asynchronous frequencies. It is revealed that the inner layer does not affect higher modes significantly and mainly affects the first frequency. Then, equation of motion in the presence of cubic nonlinearity in the inner layer is derived and transformed to the form of Duffing equation. Using an analytical solution, the effect of nonlinearity on the frequency for simply-supported and clamped boundary conditions is analyzed. Results show that the nonlinearity effect is not significant and, in small amplitude free vibration analysis of a double-beam system, the material nonlinearity of the inner layer could be neglected.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nonlinear Vibration Analysis of a cantilever beam with nonlinear geometry

Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...

full text

Vibration Analysis of a Nonlinear System with a Nonlinear Absorber under the Primary and Super-harmonic Resonances (TECHNICAL NOTE)

Abstract   In vibratory systems, linear and nonlinear vibration absorbers can be used to suppress the primary and super-harmonic resonance responses. In this paper, the behavior of a nonlinear system with a nonlinear absorber, under the primary and super-harmonic resonances is investigated. The stiffnesses of the main system and the absorber are cubically nonlinear and the dampers are linear. M...

full text

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

full text

nonlinear vibration analysis of a cantilever beam with nonlinear geometry

analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. according to this, an impressive analytical method which is called modified iteration perturbation method (mipm) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. this new method is combined by the mickens and iteration methods. moreover, this method don...

full text

Free Vibration Analysis of a Nonlinear Beam Using Homotopy and Modified Lindstedt-Poincare Methods

In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  174- 180

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023